翻訳と辞書
Words near each other
・ Lidor Cohen
・ Lidor Cohen (footballer born 1992)
・ Lidor Yosefi
・ Lidoriki
・ Lidoro Oliver
・ Lidov
・ Lidovka
・ Lidové noviny
・ Lidrezing
・ LIDS
・ Lids (store)
・ Lidsing
・ Lidster
・ Lidstone
・ Lidstone (surname)
Lidstone series
・ Lidströmer
・ Lidsville
・ Lidth's jay
・ Lidtke Mill
・ Lidu Yangtze River Bridge
・ Lidui Park Railway Station
・ Lidung Jelo
・ Lidushik
・ Lidwina
・ Lidy Creek
・ Lidy Prati
・ Lidy Stoppelman
・ Lidy Walker Covered Bridge
・ Lidya Tchakerian


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lidstone series : ウィキペディア英語版
Lidstone series
In mathematics, a Lidstone series, named after George James Lidstone, is a kind of polynomial expansion that can expressed certain types of entire functions.
Let ''ƒ''(''z'') be an entire function of exponential type less than (''N'' + 1)''π'', as defined below. Then ''ƒ''(''z'') can be expanded in terms of polynomials ''A''''n'' as follows:
:f(z)=\sum_^\infty \left(A_n(1-z) f^(0) + A_n(z) f^(1) \right ) + \sum_^N C_k \sin (k\pi z).
Here ''A''''n''(''z'') is a polynomial in ''z'' of degree ''n'', ''C''''k'' a constant, and ''ƒ''(''n'')(''a'') the ''n''th derivative of ''ƒ'' at ''a''.
A function is said to be of exponential type of less than ''t'' if the function
:h(\theta; f) = \underset\, \frac \log |f(r e^)|\,
is bounded above by ''t''. Thus, the constant ''N'' used in the summation above is given by
:t= \sup_ h(\theta; f)\,
with
:N\pi \leq t < (N+1)\pi.\,
==References==

* Ralph P. Boas, Jr. and C. Creighton Buck, ''Polynomial Expansions of Analytic Functions'', (1964) Academic Press, NY. Library of Congress Catalog 63-23263. Issued as volume 19 of ''Moderne Funktionentheorie'' ed. L.V. Ahlfors, series ''Ergebnisse der Mathematik und ihrer Grenzgebiete'', Springer-Verlag ISBN 3-540-03123-5

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lidstone series」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.